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Abstract. We present the results connected with density points on the real line with
respect to sequences tending to zero. The first part deals with the family od sets
having the Baire property and convergence with respect to the σ-ideal of the first
category sets. The second part is devoted to the family of Lebesgue measurable sets
and convergence with respect to the σ-ideal of the Lebesgue null measure sets.
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1. Introduction

Through the paper we will use the standard notation: R will be the set of real
numbers, Q will be the set of rational numbers and N the set of positive integers.
By Ba and L we will denote the family of Baire sets and Lebesgue measurable sets,
respectively. Moreover, I will stand for the σ-ideal of the first category sets in R
and L for the σ-ideal of the Lebesgue null measure sets. By λ(A) we shall denote
the Lebesgue measure of a measurable set A and by |I| the length of an interval I.
Furthermore, Tnat will denote the natural topology on R and 〈s〉 – an unbounded and
non-decreasing sequence {sn}n∈N of positive real numbers.

We shall say that a family F of subsets of R is invariant if for every P ∈ F , x ∈ R
and m ∈ R \ {0} we get that P + x ∈ F and mP ∈ F , where

P + x ={a+ x : a ∈ P},

mP ={ma : a ∈ P}.
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According to paper [11] we shall say that 0 is a density point of a set A ∈ Ba with
respect to category if the sequence {fn}n∈N = {χnA∩[−1,1]}n∈N converges with respect
to the σ-ideal I to the characteristic function χ[−1,1]. It means that every subsequence
of the sequence {fn}n∈N contains a subsequence converging to the function χ[−1,1]

everywhere except for a set of the first category. Basing on this concept we consider
more general approach.

For J = [a, b] we put

s(J) =
1

2
(a+ b),

h(A, J)(x) = χ 2

|J|
(A−s(J))∩[−1,1](x).

By J we shall denote a sequence of non-degenerate and closed intervals {Jn}n∈N

tending to zero, that means

lim
n→∞

s(Jn) = 0 and lim
n→∞

|Jn| = 0.

These conditions are equivalent to the following one:

diam{Jn ∪ {0}} −→
n→∞

0.

From now on, the family of all sequences of intervals tending to zero will be denoted
by ℑ. Moreover, we will identify sequences which differ a finite numbers of their terms.
To shorten notation, we will write J instead of {Jn}n∈N.

We say that a sequence of intervals J = {[an, bn]}n∈N ∈ ℑ, is right-side (left-
side) tending to zero if there exists n0 ∈ N such that bn > 0 (an < 0) for n > n0

and

lim
n→∞

min{0, an}

bn
= 0

(

lim
n→∞

max{0, bn}

an
= 0

)

.

Sequence of intervals J ∈ ℑ is one-side tending to zero if it is right-side or
left-side tending to zero.

Definition 1.1. Let P be a proper σ-ideal of subsets of R and J ∈ ℑ. The point 0 is
a P(J )-density point of a set A ⊂ R if

h(A, Jn)(x)
P
−→
n→∞

χ[−1,1](x),

it means

∀ {nk}k∈N ∃ {nkm
}m∈N ∃Θ ∈ P ∀x /∈ Θ h(A, Jnkm

)(x) −→
m→∞

χ[−1,1](x),

where the symbol
P
−→
n→∞

stands for a convergence with respect to σ-ideal P.

It is obvious that 0 is a P(J )-density point of a set A ⊂ R if and only if

∀ {nk}k∈N ∃ {nkm
}m∈N lim sup

m→∞

(

[−1, 1] \ (A− s(Jnkm
))

2

|Jnkm
|

)

∈ P .
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We shall say that a point x0 ∈ R is a P(J )-density point of a set A ⊂ R if and
only if 0 is a P(J )-density point of the set A− x0.

For every set A ⊂ R let us denote

ΦP(J )(A) = {x ∈ R : x is a P(J )-density point of A}.

Now, let us consider invariant σ-algebra S of subsets of R, P – a proper, invariant
σ-ideal contained in S and J ∈ ℑ. As the consequence of definition of a P(J )-density
point we get the following theorem.

Theorem 1.2. For every sets A,B ∈ S we have:

1. ΦP(J )(∅) = ∅, ΦP(J )(R) = R;
2. A △ B ∈ P ⇒ ΦP(J )(A) = ΦP(J )(B);
3. ΦP(J )(A ∩B) = ΦP(J )(A) ∩ ΦP(J )(B).

If an operator ΦP(J ) satisfies an additional condition ΦP(J )(A) \ A ∈ P for any
A ∈ S, then it is an almost lower density operator on (R,S,P). Whereas, if it fulfills
an additional condition ΦP(J )(A) △ A ∈ P for any A ∈ S, then it is a lower density
operator on (R,S,P).

Putting
TP(J ) = {A ∈ S : A ⊂ ΦP(J )(A)},

by conditions 1 and 2 we get that TP(J ) is a topology if S coincides with the family
of all subsets of real line and P is any proper σ-ideal. However, it does not have to be
topology. For example for S equals the family of Borel sets on the real line, P = {∅}
and J =

{[

1
n
, 1
n

]}

n∈N
we have that TP(J ) is not a topology (see [6]).

In our further considerations we will concentrate only on two σ-algebras: Ba, L
and corresponding to them σ-ideals: I, L. It is worth noting that, although in both
cases the properties of the topologies generated by the respective density points are
similar, then methods of their proving in each case are different.

2. The case of family of sets having the Baire property

In this section we will focus on the σ-ideal of the first category sets in R, so in
Definition 1.1 we will consider σ-ideal I instead of σ-ideal P . In this way we will
obtain an I(J )-density point. Taking the special sequence J =

{[

− 1
n
, 1
n

]}

n∈N
, we

get that x0 is an I(J )-density point of a set A ∈ Ba if and only if x0 is an I-density

point of A (see [11]). Moreover, for 〈s〉 and J =
{[

− 1
sn
, 1
sn

]}

n∈N
, the notion of an

I(J )-density point of a set A ∈ Ba is equivalent to the notion of an 〈s〉-I-density
point of A (see [7]).

It should be emphasized that for an operator ΦI(J ) the analogue of Lebesgue
Density Theorem holds:

Theorem 2.1 ([12]). For every sets A ∈ Ba and J ∈ ℑ we have:

A △ ΦI(J )(A) ∈ I.
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Proof. Let A ∈ Ba, then there exist an open set G and a set P ∈ I such that
A = G △ P . We will show that A \ ΦI(J )(A) ∈ I. Let us take a point x ∈ G. Then
there exists a number n0 ∈ N such that x+ Jn ⊂ G for n > n0, hence Jn ⊂ G− x. So
we have

2

|Jn|

(

A− (x+ s (Jn))
)

⊃
2

|Jn|
((G \ P )− (x+ s (Jn))) =

=
2

|Jn|

((

(G− x)− s(Jn)
)

\
(

P − (x+ s(Jn))
))

⊃

⊃
2

|Jn|

(

(Jn − s(Jn)) \ (P − (x+ s(Jn)))
)

= [−1, 1] \
2

|Jn|

(

P − (x+ s(Jn))
)

.

If P ∈ I then 2
|Jn|

(

P − (x+ s(Jn))
)

∈ I. Hence for x ∈ G we obtain that

h(A− x, Jn)(x)
I

−→
n→∞

χ[−1,1](x),

so that A \ ΦI(J )(A) ⊂ A \G ∈ I.
To finish the proof we must show that ΦI(J )(A)\A ∈ I. Observe that ΦI(J )(A) ⊂

R \ ΦI(J )(R \A). Then

ΦI(J )(A) \A ⊂ (R \ ΦI(J )(R \A)) ∩ (R \A) = (R \A) \ ΦI(J )(R \A) ∈ I.

⊓⊔

2.1. An I(J )-density topology and its properties

By Theorem 1.2 and Theorem 2.1 we have that operator ΦI(J ) is a lower density
operator on (R,Ba, I). It is well known that for any measurable space (X,S,P),
where S is a σ-algebra of subsets of X and P ⊂ S is a proper σ-ideal, if an operator
φ : S → S is a lower density operator on (X,S,P) and a pair (S,P) has the hull
property, then the family T = {A ∈ S : A ⊂ φ(A)} is a topology (see [9]), so we have

Theorem 2.2 ([12]). The family

TI(J ) = {A ∈ Ba : A ⊂ ΦI(J )(A)}

is a topology on R, which will be called I(J )-density topology. Moreover, Tnat  TI(J ).

Since for any J ∈ ℑ, an operator ΦI(J ) is a lower density operator, so by Theorem
25.3 in [9] we obtain immediately the following theorem.

Theorem 2.3. Let J ∈ ℑ.

(i) (R, TI(J )) is a Baire space;
(ii) (R, TI(J )) is neither a first countable, nor a second countable, nor a separable,

nor a Lindelöf space;
(iii) A ∈ I if and only if A is a closed and discrete set with respect to a topology T ;
(iv) a set A ⊂ R is compact with respect to a topology TI(J ) if and only if A is finite.
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(v) I is equal to the family of all meager sets with respect to a topology TI(J );
(vi) A ∈ Ba if and only if A is a union of two sets - one of them is open with respect

to a topology TI(J ) and a second one is closed with respect to a topology TI(J );
(vii) Ba coincides with the family of all Borel sets (Baire sets) with respect to a topol-

ogy TI(J ).

Moreover, we have that

Theorem 2.4 ([13]). Let J ∈ ℑ. Then [a, b) ∈ TI(J ) ((a, b] ∈ TI(J )) for a < b if and
only if the sequence J is right-side (left-side) tending to zero.

This theorem yields to the following

Theorem 2.5. If the sequence J ∈ ℑ is right-side (left-side) tending to zero, then
(R, TI(J )) is not connected.

From Definition 1.1 we have the following property.

Property 2.6 ([12]). Let J ∈ ℑ, then 0 is an I(J )-density point of the set

Ak = {0} ∪
⋃

n>k

int(Jn),

for every k ∈ N. Moreover, Ak ∈ TI(J ).

The next theorem shows that we have obtained an essential extension of I-density
points.

Theorem 2.7 ([12]). For every sequence J ∈ ℑ there exists a sequence K = {Kn}n∈N

of intervals tending to zero such that

TI(J ) \ TI(K) 6= ∅ ∧ TI(K) \ TI(J ) 6= ∅.

Proposition 2.8 ([12]). Let J = {Jn}n∈N and K = {Kn}n∈N be sequences tending
to zero. If for every n ∈ N there exists k(n) ∈ N such that Jn = Kk(n) then TI(K) ⊂
TI(J ).

The succeeding theorems gives us an examples of situation when the topologies
generated by sequences of intervals are identical.

Theorem 2.9 ([12]). Let J ∈ ℑ and l ∈ N. If we divide every interval Jn on equal l
intervals and order them in a sequence K, then TI(J ) = TI(K).

Theorem 2.10 ([12]). Let J = {Jn}n∈N and K = {Kn}n∈N be sequences of intervals
tending to zero. If

lim
n→∞

λ(Jn △ Kn)

λ(Jn ∩Kn)
= 0,

then TI(J ) = TI(K).

The following theorems show some properties of the family of I(J ) type topologies.

Theorem 2.11 ([12]). Let TH = {V \ P : V ∈ Tnat ∧ P ∈ I}. Then

⋂

J∈ℑ

TI(J ) = TH .
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Theorem 2.12 ([12]). Let T ∗ be the topology generated by
⋃

J∈ℑ TI(J ). Then

T ∗ = 2R and
⋃

J∈ℑ

TI(J ) 6= T ∗.

Theorem 2.13 ([12]). For any sequence J ∈ ℑ, the space (R, TI(J )) is Hausdorff
but not regular.

2.2. I(J )-approximately continuous functions

The class of approximately continuous function was defined by Denjoy in [3].
The category analogue of approximate continuity was presented by Poreda, Wagner-
Bojakowska and Wilczyński in [11].

A function f : R → R is I(J )-approximately continuous, if it is continuous
with respect to the I(J )-density topology on the domain and the natural topology
on the range.

Theorem 2.14 ([13]). Let J be a sequence of intervals tending to zero. Then every
I(J )-approximately continuous function is of the first Baire class.

In the proof of the last theorem of this subsection, the following easy fact is needed.

Conclusion 2.15 ([13]). If a sequence J ∈ ℑ is not one-side tending to zero, then
for any nonempty set U ∈ TI(J ), δ > 0 and x ∈ ΦI(J )(U) we have that

U ∩ (x, x+ δ) 6= ∅ and U ∩ (x − δ, x) 6= ∅.

Theorem 2.16 ([13]). Let J ∈ ℑ. Every I(J )-approximately continuous function is
Darboux function if and only if the sequence J is not one-side tending to zero.

Proof. Necessity. Let the sequence J ∈ ℑ is right-side tending to zero and define
function

f(x) = x− k for x ∈ [k, k + 1).

This is an I(J )-approximately continuous function but it is not a Darboux function.
If the sequence J ∈ ℑ is left-side tending to zero, then we consider function

g(x) = x− k for x ∈ (k, k + 1].

Sufficiency. Let the sequence J ∈ ℑ be not one-side tending to zero and f be an
I(J )-approximately continuous function. Fix an x ∈ R and for each n ∈ N define the
set

Vn =

(

f(x)−
1

n
, f(x) +

1

n

)

.

By I(J )-approximate continuity of the function f there exists a set Un ∈ TI(J ) such
that f(Un) ⊂ Vn and x ∈ Un is an I(J )-density point of the set Un. Conclusion 2.15
implies that for any n ∈ N there exist
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y1n ∈ Un ∩

(

x−
1

n
, x

)

and y2n ∈ Un ∩

(

x, x+
1

n

)

.

Hence we obtain two sequences
{

y1n
}

n∈N
and

{

y2n
}

n∈N
such that

y1n −→
n→∞

x and y2n −→
n→∞

x

and
lim
n→∞

f(y1n) = lim
n→∞

f(y2n).

Obviously, by Theorem 2.14 we have that f is of the first Baire class. Thus, by Young’s
criterion (Theorem 1.1 in [1]), we conclude that function f is Darboux function. ⊓⊔

3. The case of the family of Lebesgue measurable sets

The notion of a density point connected with the Lebesgue measure was introduced
at the beginning of 20th century. We say that x0 ∈ R is a density point of a Lebesgue
measurable set A if

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])

2h
= 1. (1)

Moreover, we have that the condition (1) can be replaced with the following one:

lim
n→∞

λ(A ∩ [x0 −
1
n
, x0 +

1
n
])

2
n

= 1. (2)

This observation led to the generalization of a density point introduced in 2004 by
M. Filipczak and J. Hejduk ([5]). They considered in (2) a sequence 〈s〉 instead of the
sequence {n}n∈N. Thus we say that x0 ∈ R is an 〈s〉-density point of a set A ∈ L if

lim
n→∞

λ(A ∩ [x0 −
1
sn
, x0 +

1
sn
])

2
sn

= 1. (3)

Moreover we have that the condition (2) is equivalent the condition (3) iff
lim inf
n→∞

sn
sn+1

> 0 (see [5]).

One can ask what will happen if we replace the sequence {[x0−
1
sn
, x0+

1
sn
]}n∈N by

a sequence J + x0, where J ∈ ℑ? In this case we also obtain a new kind of a density
poin – a J -density point. This notion was introduced in 2013 by R. Wiertelak.

Definition 3.1. Let A ∈ L, J ∈ ℑ. We shall say that the point 0 is a J -density
point of a set A if

lim
n→∞

λ(A ∩ Jn)

|Jn|
= 1. (4)

Note that in the general case of a P(J)-density point we consider a special se-
quence of characteristic functions converges to χ[−1,1] with respect to σ-ideal P (see
Definition 1.1). It is worth adding that in the case of a J -density point we can also
consider such sequence. More specifically, an equivalent formulation of (4) is:
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χ 2

|Jn|
(A−s(Jn))∩[−1,1](x)

λ
−→
n→∞

χ[−1,1](x),

where the symbol
λ

−→
n→∞

denotes a convergence with respect to the Lebesgue measure.

Indeed, the following equivalences are obvious.

lim
n→∞

λ(A ∩ Jn)

|Jn|
= 1 ⇔ lim

n→∞

λ((A − s(Jn)) ∩ (Jn − s(Jn)))

|Jn|
= 1 ⇔

lim
n→∞

2

|Jn|
λ((A − s(Jn)) ∩ (Jn − s(Jn))) = 2 ⇔

lim
n→∞

λ(
2

|Jn|
(A− s(Jn)) ∩

2

|Jn|
(Jn − s(Jn))) = 2 ⇔

lim
n→∞

λ(
2

|Jn|
(A− s(Jn)) ∩ [−1, 1]) = 2 ⇔ χ 2

|Jn|
(A−s(Jn))∩[−1,1](x)

λ
−→
n→∞

χ[−1,1](x).

In addition, it is worth noting that the last condition saved in the last line above is
equivalent to the following

∀ {nk}k∈N ∃ {nkj
}j∈N χ 2

|Jnkj
|
(A−s(Jnkj

))∩[−1,1](x) −→
j→∞

χ[−1,1](x) L a.e.

where L a.e. means that in this case we consider L-almost everywhere convergence.
Thus in the case of the Lebesgue measure we can check whether a point 0 is a J -

density point of a set A ∈ L, as in the case of I(J)-density point. However, it appears
that in the case of the Lebesgue measure the condition (4) is easier to check and it is
more often applied.

Obviously, a point x0 ∈ R is a J -density point of a set A ∈ L if 0 is a J -density
point of a set A− x0 or equivalently if

lim
n→∞

λ(A ∩ (x0 + Jn))

|Jn|
= 1.

If for any A ∈ L and J ∈ ℑ we put

ΦJ (A) = {x ∈ R : x is a J -density point of the set A},

then we obtain that ΦJ (A) ∈ L for any A ∈ L (see [10]) and operator ΦJ : L → L
has properties presented in Theorem 1.2 for P = L. It is also worth noting that
theorem analogous to Theorem 2.1 is not true for every sequence J ∈ ℑ. In [2] there
is a construction of a set A ∈ L and a sequence J ∈ ℑ such that ΦJ (A) △ A 6∈ L.
However, if we consider a subfamily ℑα ⊂ ℑ such that for any sequence J ∈ ℑα we
have

α(J ) = lim sup
n→∞

diam(Jn ∪ {0})

|Jn|
< ∞,

then the analogue of Lebesgue Density Theorem holds.

Theorem 3.2 ([10]). If J ∈ ℑα and A ∈ L then ΦJ (A) △ A ∈ L.
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Proof. We only need to show that A \ ΦJ (A) ∈ L for any bounded set A. Moreover,
there is no loss of generality in assuming that the sequence {|Jn|}n∈N is decreasing
and

diam{{0} ∪ Jn} < 2α(J )|Jn|. (5)

First, we will prove that for any 0 < ε < 1

Eε =

{

x ∈ A : lim inf
n∈N

λ(A ∩ (Jn + x))

|Jn|
< 1− ε

}

∈ L. (6)

Suppose, contrary to our claim, that the outer Lebesgue measure of E, denoted by
λ∗(E), is greater than 0. Thus one can find a set G ∈ Tnat such that Eε ⊂ G and
(1− ε)λ(G) < λ∗(Eε).

Let E be the family of all closed intervals I ⊂ G such that λ(A ∩ I) < (1 − ε)|I|
and I = Jn + x for some x ∈ Eε and n ∈ N. Observe that

(i) every neighbourhood of each x ∈ Eε contains an interval I ∈ E ;
(ii) for any sequence {In} of disjoint intervals from E the inequality λ∗ (Eε \

⋃

In) > 0
holds.

The property (i) is obvious. The property (ii) results from the following fact

λ∗
(

Eε ∩
⋃

n∈N

In

)

6
∑

n∈N

λ(A ∩ In) 6 (1− ε)
∑

n∈N

|In| =

= (1− ε)λ
(

⋃

n∈N

In

)

6 (1 − ε)λ(G) < (1− ε)λ∗(Eε).

Now, we will construct inductively a sequence {In}n∈N of disjoint intervals from E .
We start by putting

k0 = min

{

i ∈ N : ∃
x∈Eε

Ji + x ∈ E

}

and choosing interval I1 from E such that |I1| = |Jk0
|. Assume that intervals Ii for

i ∈ {1, 2, . . . , n} have been chosen. Let En be the subset of E which consists of all
intervals that are disjoint from I1, . . . , In. Properties (ii) and (i) imply that En 6= ∅.
Define

kn = min

{

i ∈ N : ∃
x∈Eε

Ji + x ∈ En

}

.

and choose an interval In+1 from En with length |Jkn
|.

Putting B = Eε \
⋃

n∈N

In we obtain, by (ii), that λ∗(B) > 0. Hence there is N ∈ N

such that
∞
∑

n=N+1

|In| <
λ∗(B)

4α(J ) + 1
. (7)

For each n > N let Kn be the interval concentric with In such that |Kn| = (4α(J ) +
1)|In|. The inequality (7) implies that

⋃

n∈N

Kn does not cover the set B, so there exists

a point
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x ∈ B \
⋃

n>N

Kn. (8)

Therefore x ∈ Eε \
N
⋃

n=1
In. From (ii) and (i) it follows that there exists an interval

Ix ∈ EN such that Ix = Jnx
+ x for some nx ∈ N. It is clear that Ix ∩ In 6= ∅ for some

n > N . Putting n0 = min{n ∈ N : In ∩ Ix 6= ∅} we obtain that |Jnx
| = |Ix| 6 |In0

|.
The condition (5) implies

dist(x, In0
) 6 diam{x ∪ Ix} = diam{{0} ∪ Jnx

} < 2α(J )|Jnx
| 6 2α(J )|In0

|,

where dist(x, In0
) denotes the distance between the point x and the interval In0

. Thus
x ∈ Kn0

, contrary to (8).
From (6) and the inclusion

A \ ΦJ (A) ⊂
⋃

ε∈(0,1)∩Q

Eε

we get immediately that A △ ΦJ (A) ∈ L. ⊓⊔

Therefore for any J ∈ ℑα an operator ΦJ is a lower density operator on (R,L,L).
In addition, it is worth noting that when we compare the above proof with proof of
Theorem 2.1, it is easy to observe differences in the methods that are used in them.
We see at once that in the case of J -density points we need to take other action than
in the case of I(J )-density points.

Obviously, one can ask what will happen if we consider any J ∈ ℑ. In this case we
can prove the following fact.

Theorem 3.3 ([10]). If J ∈ ℑ and A ∈ L then ΦJ (A) \A ∈ L.

Therefore for any J ∈ ℑ an operator ΦJ is an almost lower density operator on
(R,L,L).

3.1. A J-density topology and its property

In this section we will focus our attention on topology generated by J -density
points. As in the case of I(J )-density topology (see Section 2.1) we have that family
TJ = {A ∈ L : A ⊂ ΦJ (A)} is a topology for any J ∈ ℑα.

What is more, in [9] one can find the property that for any measurable space
(X,S,P), where S is a σ-algebra of subsets of X and P ⊂ S is a proper σ-ideal, if
an operator φ : S → S is an almost lower density operator on (X,S,P) and a pair
(S,P) has the hull property, then the family T = {A ∈ S : A ⊂ φ(A)} is a topology,
so we immediately obtain
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Theorem 3.4 ([10]). Let J ∈ ℑ. The family

TJ = {A ∈ L : A ⊂ ΦJ (A)}

is a topology called a J -density topology.

Moreover, as in the case of I(J )-density topology, it is easy to see that Tnat  TJ .
Furthermore, since for any J ∈ ℑ, an operator ΦJ is an almost lower density operator,
so by Theorem 25.27 in [9] we obtain immediately the following claim

Theorem 3.5. Let J ∈ ℑ.

(i) (R, TJ ) is neither a first countable, nor a second countable, nor a separable, nor
a Lindelöf space;

(ii) A ∈ L if and only if A is a closed and discrete set with respect to a topology TJ ;
(iii) a set A ⊂ R is compact with respect to a topology TJ if and only if A is finite.

If J ∈ ℑα, then an operator ΦJ is a lower density operator, so in this case to the
properties presented in Theorem 3.5 we can add another (cf. Theorem 25.3 in [9])

Theorem 3.6. Let J ∈ ℑα.

(a) (R, TJ ) is a Baire space;
(b) L is equal to the family of all meager sets with respect to a topology TJ ;
(c) A ∈ L if and only if A is a union of two sets - one of them is open with respect

to a topology TJ and a second one is closed with respect to a topology TJ ;
(d) L coincides with the family of all Borel sets (Baire sets) with respect to a topology

TJ .

One can ask about the connection between the density topology Td and a J -
density topology. If we consider an unbounded and nondecreasing sequence {sn}n∈N

of positive numbers and a sequence J = {Jn}n∈N, where Jn = [− 1
sn
, 1
sn
] for n ∈ N,

then we have that Td ⊂ TJ (see [4]). In general, such a relationship does not have to
take place. Indeed, we have

Theorem 3.7 ([10]). If J ∈ ℑ \ ℑα, then there exists an open set A such that
0 ∈ Φd(A) and 0 6∈ ΦJ (A).

From the above theorem we can deduce at once

Theorem 3.8. If J ∈ ℑ \ ℑα, then Td \ TJ 6= ∅.

Moreover, we can show that there exists a sequence J ∈ ℑ\ℑα such that TJ \Td 6= ∅
and Td \ TJ 6= ∅. However, if we consider any sequence J ∈ ℑα, then Td \ TJ = ∅. We
can describe the relationship between the density topology and TJ in the following
way.

Theorem 3.9 ([10]). Let J ∈ ℑ. The following conditions are equivalent:

(a) α(J ) < +∞;
(b) Td ⊂ TJ .
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It should be added that there are sequences J ,K ∈ ℑα such that Td 6= TJ and
Td = TK.

Interesting is also the question about the relationship between the J -density
topologies for different sequences J ∈ ℑ. The question whether the claim analogous
to Theorem 2.7 is true in the case of the J - density topology is still open. However,
we have

Theorem 3.10. There exist sequences K,J ∈ ℑ such that TJ \TK 6= ∅, TK \TJ 6= ∅,
TJ 6= Td and TK 6= Td.

To prove this it suffices to consider sequences J = {[− 1
(2n−1)! ,

1
(2n−1)! ]}n∈N and

K = {[− 1
(2n)! ,

1
(2n)! ]}n∈N (see [4]).

The next theorem shows some connection between J -density topology and 〈s〉-
density topology associated with 〈s〉-density points.

Theorem 3.11 ([10]). If J ∈ ℑα, then there exists a sequence K ∈ ℑ of symmetrical
intervals such that TK ⊂ TJ .

Moreover, from Theorem 3.8 and 3.9 it may be concluded

Theorem 3.12. If J ∈ ℑα and K ∈ ℑ \ ℑα, then TJ \ TK 6= ∅.

Furthermore, Theorem 8 in [5] gives

Theorem 3.13. Let T ∗ be the topology generated by
⋃

J∈ℑ

TJ . Then

T ∗ = 2R and
⋃

J∈ℑ

TJ 6= T ∗.

We end this section with two properties connected with separation axioms for J -
density topology. The second one will show the differences between the J -density
topology and I(J )-density topology for J ∈ ℑα.

Since for any J ∈ ℑ, we have that Tnat ⊂ TJ , so

Property 3.14 ([8]). For any J ∈ ℑ a space (R, TJ ) is a Hausdorff space.

Moreover, we have

Property 3.15 ([8]). For any J ∈ ℑα a space (R, TJ ) is regular and it is not normal.

The question whether for any sequence J ∈ ℑα a space (R, TJ ) is completely
regular is still open. Just like the question whether for any J ∈ ℑ \ ℑα a space
(R, TJ ) is regular, completely regular or normal.

3.2. J-approximately continuous functions

It was mentioned in Section 2.2 that the notion of approximately continuous func-
tions was introduced by Denjoy. He considered this class of functions in conjunction
with the density points. Now, we will concentrate on the analogue concept in connec-
tion with J -density points.
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Let f : R → R and J ∈ ℑ. We say that f is J -approximately continuous
at a point x0 ∈ R if there exists a set Ax0

∈ L such that x0 ∈ ΦJ (Ax0
) and

f(x0) = lim
x→x0,
x∈Ax0

f(x).

Obviously, we say that f : R → R is a J -approximately continuous function
if it is J -approximately continuous at each point x ∈ R. It is easy to see that, if
f : R → R is a continuous function, then it is J -approximately continuous for any
sequence J ∈ ℑ. If f : R → R is an approximately continuous function, then it is
J -approximately continuous for any sequence J ∈ ℑα. For any J ∈ ℑ \ ℑα there
exists an approximately continuous function f : R→ R which is not J -approximately
continuous (see [8]).

Theorem 3.16 ([8]). Let J ∈ ℑ. The family of all J -approximately continuous
functions f : R→ R is closed under addition and multiplication. Moreover, if g : R→
R is J -approximately continuous, then the function 1

g
is J -approximately continuous,

whenever g(x) 6= 0 for any x ∈ R.

Now, we will focus our attention on sequences J belonging to ℑα. The question
whether the following statements are true also for sequences J ∈ ℑ\ℑα is still open.

Theorem 3.17 ([8]). Let J ∈ ℑα. If f : R → R is a J -approximately continuous
function, then f is of the first Baire class.

The relationship between the J -approximately continuous functions and J -density
topology for J ∈ ℑα can be explained in the following theorem.

Theorem 3.18 ([8]). Let f : R→ R and J ∈ ℑα. The function f is J -approximately
continuous if and only if for any β ∈ R the sets {x ∈ R : f(x) < β} and {x ∈ R :
f(x) > β} belong to the topology TJ .

In addition, there is a relationship between these functions and Lebesgue measur-
able functions analogous to the case of approximately continuous functions.

Theorem 3.19 ([8]). Let f : R→ R. The following conditions are equivalent:

(i) f is a Lebesgue measurable function,
(ii) there exists B ∈ L such that for any sequence J ∈ ℑα and any x ∈ R \ B the

function f is J -approximately continuous at a point x,
(iii) there exists a sequence J ∈ ℑα and there exists BJ ∈ L such that the function

f is J -approximately continuous at each point x ∈ R \BJ .
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